Abstract

Visible light communication (VLC) has emerged as a dynamic area of research poised to revolutionize high-speed wireless communication. VLC technology uses light-emitting diodes (LEDs) within existing infrastructure to emit light within the visible spectrum. VLC complements traditional radio frequency (RF) communications, addressing its inherent limitations and drawbacks. To navigate the demands of modern urban environments, VLC systems must prioritize secure data transmission, accessibility, and economic feasibility, particularly within the framework of smart cities. We introduce what is to our knowledge a novel privacy-enhanced VLC system for optical wireless communication. Leveraging color data modulation techniques and the intricacies of a hyperchaotic three-dimensional map, this innovative approach ensures robust security. By employing diverse LED colors for data transmission and exploiting the unpredictable mathematical properties of hyperchaotic maps, enhanced privacy is achieved. The performance of the proposed system was rigorously evaluated through various tests, manipulating initial control parameters of the encryption process with the hyperchaotic map, as well as adjusting message length and content. Tests were conducted over a 1 m connection distance at a symbol transmission rate of 2 baud. Remarkably, the proposed system demonstrated high accuracy in message recovery, achieving a symbol error rate (SER) of only 0.02 at an incident optical power of 22 µW. We highlight the critical importance of precise decryption parameter values in the proposed method, demonstrating the necessity for accuracy within the range of 10−15 for each decryption parameter; it underscores the indispensability of meticulous parameter calibration to ensure the correct decryption of transmitted symbols. These results pave the way for applications where absolute security is imperative, particularly in smart city environments, such as for key distribution purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.