Abstract
Quantum teleportation is the fundamental communication unit in quantum communication. Here, a three-level system is selected for storing and transmitting quantum information, due to its unique advantages, such as lower cost than a higher-level system and higher capacity and security than a two-level system. It is known that the key procedure for perfect teleportation is the distribution of entanglement through quantum channel. However, amounts of noise existing in the quantum channel may interfere the entangled state, causing the degradation of quantum entanglement. In the physical implementations of quantum communication schemes, noise acting on the carriers of successive transmissions often exhibits some correlations, which is the so called quantum memory channel. In this paper, a memory channel model during the entanglement distribution phase is constructed and the uniform expression of the evolution of a two-qutrit entangled state under different kinds of correlated noise is derived. Finally, Pauli noise and amplitude damping noise as the typical noise source are considered to analyze the influence of memory effects of noise on qutrit teleportation. It is expected to show that three-level teleportation under these two types of channels can generally enhance the robustness to noise if the Markovian correlations of quantum channel are taken into consideration.
Highlights
In the past decades, quantum science and technology has been applied in various fields of information science, such as machine learning [11, 21, 23, 31,32,33, 49] and network communication [10, 28, 36, 53, 54]
It is significant to investigate the memory effects of noisy channel that may exist in realistic entanglement distribution for inhibiting the negative effects of noise on teleportation
The memory effects of lossy photon channel may emerge when two photons of the entangled photonic state are successively transmitted through the channel with the separation time scale of two consecutive transmissions much lower than the finite relaxation time of local environment interacted with the external reservoir
Summary
Quantum science and technology has been applied in various fields of information science, such as machine learning [11, 21, 23, 31,32,33, 49] and network communication [10, 28, 36, 53, 54]. The experimental counterparts of memory effects in quantum communication schemes are limited to the direct transmission of each carrier, such as the photons travelling through optical fiber can be affected by the birefringence fluctuations [5, 6] whose characteristic time scales are much longer than the temporal separation between consecutive light pulses; information transmission in a spin chain channel where if the chain is not reset after each use of the channel, the first transmission of information state could influence the second [8]; and the Bosonic channel considering the loss of energy en route where the much higher use rate of channel would induce the unwanted overlaps between consecutive input pulses or interfere with the finite relaxation time of the local environment, leading to the memory effects of attenuation [39, 40]. It is worth considering that how to construct a model of quantum memory channel during the entanglement distribution for improving the communication quality of teleportation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.