Abstract

Driver drowsiness detection is a significant element of Advanced Driver-Assistance Systems (ADASs), which utilize deep learning (DL) methods to improve road safety. A driver drowsiness detection system can trigger timely alerts like auditory or visual warnings, thereby stimulating drivers to take corrective measures and ultimately avoiding possible accidents caused by impaired driving. This study presents a Deep Learning-based Intelligent Driver Drowsiness Detection for Advanced Driver-Assistance Systems (DLID3-ADAS) technique. The DLID3-ADAS technique aims to enhance road safety via the detection of drowsiness among drivers. Using the DLID3-ADAS technique, complex features from images are derived through the use of the ShuffleNet approach. Moreover, the Northern Goshawk Optimization (NGO) algorithm is exploited for the selection of optimum hyperparameters for the ShuffleNet model. Lastly, an extreme learning machine (ELM) model is used to properly detect and classify the drowsiness states of drivers. The extensive set of experiments conducted based on the Yawdd driver database showed that the DLID3-ADAS technique achieves a higher performance compared to existing models, with a maximum accuracy of 97.05% and minimum computational time of 0.60 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call