Abstract
The energy density of supercapacitors can be improved through rapid surface reconstruction of electrode materials in an alkaline medium. Transition metal sulfides (TMSs), including Co9S8, are widely used as energy storage electrode materials owing to their excellent structural characteristics. However, systematic research dealing with the enhancement of Co9S8 reconstruction ability induced by Se doping has not well been investigated. Herein, an electron orbital modulation strategy was developed to promote the reconfiguration capability of Co9S8 by substitution of the Se element. The theoretical simulation and experimental characterization confirmed the successful introduction of the Se element, resulting in more polarized charge distribution in Co9S8 and better charge transfer ability. The improved adsorption capacity of OH− also enhanced the intensity of surface reactions, as well as effectively increased the refactoring rate. The optimized Co9S5.1Se2.9 exhibited a specific capacitance of 1788.1 F g−1 at 1 A g−1. The assembled flexible asymmetric supercapacitor delivered a maximum energy density of 54.9 Wh kg−1. Overall, the proposed strategy can effectively be used to construct high energy density electrode materials with optimized reconstruction of dynamic rates through effective modulation of electron orbitals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.