Abstract

Facing the challenge of low energy density of conventional electric double layer supercapacitors, researchers have long been focusing on the development of novel pseudocapacitive electrode materials with higher energy densities. Since capacitive charge storage reaction mostly occurs on the interface of electrode and electrolyte, the interface chemistry determines the achievable power and energy densities of a supercapacitor. Consequently, understanding of surface–interface reaction mechanism is a key towards efficient design of high-performance supercapacitor electrode materials. In this paper, we have reviewed the recent advances in the understanding of surfaces–interfaces in the system of pseudocapacitive supercapacitors. With significant research advancements in the understanding of surface–interface of supercapacitors, novel colloidal electrode materials with improved surface–interface structures have been developed in our previous work, which have the potential to deliver both high energy and power densities. This review aims to provide an in-depth analysis on the surface–interface control approaches to improve the energy and power densities of supercapacitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.