Abstract
The demand for real-time 4K video streaming has introduced technical challenges due to the high bandwidth, low latency, and minimal jitter required for high-quality user experience. Traditional single-path networks often fail to meet these requirements, especially under network congestion and packet loss conditions, which degrade video quality and disrupt streaming stability. This study evaluates Multipath tunnel- Generic Routing Encapsulation (MPT-GRE), a technology designed to address these challenges by enabling simultaneous data transmission across multiple network paths. By aggregating bandwidth and adapting dynamically to network conditions, MPT-GRE enhances resilience, maintains quality during network disruptions, and offers throughput nearly equal to the sum of its physical paths’ throughput. This feature ensures that even if one path fails, the technology seamlessly continues streaming through the remaining path, significantly reducing interruptions. We measured key video quality metrics to assess MPT-GRE’s performance: Structural Similarity Index Measure (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR). Our results confirm that the MPT-GRE tunnel effectively improves SSIM, PSNR, and reduces MSE compared to single-path streaming, offering a more stable, high-quality viewing experience. Our results indicate that analyzing the SSIM, MSE, and PSNR values for 4K video streaming using the MPT tunnel demonstrates a significant performance improvement compared to a single path. The improvement percentages of the SSIM and PSNR values for the MPT tunnel are (29.05% and 29.04%) higher than that of the single path, while MSE is reduced by 81.17% compared to the single path.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have