Abstract

Summary Deposition of mineral scales is the root cause of many production problems in oil and gas operations. These scale deposits have resulted in formation damage, production losses, significant rate and pressure reductions, and equipment failure because of corrosion issues. The most commonly encountered mineral scales in the oil field are carbonates and sulfate-based calcium sulfate, barium sulfate, and strontium sulfate scales. However, a more unusual form of these mineral scales, zinc sulfide, has recently been reported. This paper focuses on the systematic study of a zinc sulfide scale and the operation that removed it from a well in the Gulf of Mexico. Identifying the scale form and composition and the factors affecting its dissolution resulted in a treatment that successfully removed the scale, thereby enhancing gas production from the well. This scale was identified as wurtzite, a form of zinc sulfide scale. Extensive laboratory testing considered acid solubility and other scale-removal issues at downhole temperature and pressure conditions, as compared with the theoretical solubility of zinc sulfide in hydrochloric acid (HCl). The study also determined that other factors may affect the real-world dissolution efficiency of the acid: pressure changes, hydrogen sulfide scavenger concentration and type, the ratio of acid volume to scale weight, pre-treatment oxidizer use, and pH values that prevent reprecipitation of dissolved scale. This paper will describe the prejob testing process and a field case history of a coiled-tubing acid scale treatment that effectively removed the zinc sulfide scale from tubulars and the formation. Data will be presented showing the composition of the acid-flow-back samples as well as the treatment and production charts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.