Abstract

Near infrared spectroscopy coupled with predictive modeling is a growing field of study for addressing questions in wildlife science aimed at improving management strategies and conservation outcomes for managed and threatened fauna. To date, the majority of spectroscopic studies in wildlife and fisheries applied chemometrics and predictive modeling with a single-algorithm approach. By contrast, multi-model approaches are used routinely for analyzing spectroscopic datasets across many major industries (e.g., medicine, agriculture) to maximize predictive outcomes for real-world applications. In this study, we conducted a benchmark modeling exercise to compare the performance of several machine learning algorithms in a multi-class problem utilizing a multivariate spectroscopic dataset obtained from live animals. Spectra obtained from live individuals representing eleven amphibian species were classified according to taxonomic designation. Seven modeling techniques were applied to generate prediction models, which varied significantly (p < 0.05) with regard to mean classification accuracy (e.g., support vector machine: 95.8 ± 0.8% vs. K-nearest neighbors: 89.3 ± 1.0%). Through the use of a multi-algorithm approach, candidate algorithms can be identified and applied to more effectively model complex spectroscopic data collected for wildlife sciences. Other key considerations in the predictive modeling workflow that serve to optimize spectroscopic model performance (e.g., variable selection and cross-validation procedures) are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call