Abstract

Oscillating-water-column wave energy converters (OWC-WECs) are gaining attention for their high energy potential and environmental friendliness. However, their irregular input energy characteristics pose challenges to achieving stable power generation, particularly due to high peak power compared to average power. This study focuses on stable rating control to enable continuous power generation in the presence of irregular wave energy. It is difficult to precisely configure the existing rated power controllers due to physical time delays; this impacts system stability and utilization. To address this, we propose a rated power controller that compensates for system time delays using a deep learning algorithm. By predicting the valve control angle in advance and analyzing the input data for angle estimation, we successfully compensate for the physical time delay. The performance of the proposed rated power controller, incorporating the deep learning algorithm, is evaluated by analyzing the algorithm’s error rate. The results demonstrate that the proposed method improves power generation under various wave conditions by compensating for the unavoidable time delay of OWC-WECs, leading to a significant increase in annual power generation. In conclusion, the proposed method achieves approximately 31% higher annual power generation compared to the time delay controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.