Abstract
The positioning accuracy of computer numerical control (CNC) machine tools is mainly limited by the manufacturing accuracy of their linear and circular motion axes and by the long-term dimensional stability of their structures. Maximizing this accuracy can prove to be a particularly challenging task, especially for large-sized systems. In fact, heat-induced deformations, long-period deformation of foundations and the manufacturing process itself, these all cause time-dependent structural deformations of the machine body, which are difficult to model and to predict. The usual approach is a model-based prediction of structural deformations, which is followed by a compensation of positioning errors at CNC level. This approach is often limited by the complexity of the problem from both geometrical (system geometry can be very complex and it can vary in time) and physical (it is difficult to model and consider any possible load type and loading condition) point of view. As a consequence, only limited success has been achieved in active error compensation based on the modelling of the relationship between the generalized dynamic loads and the structural deformation field. This paper illustrates a different approach in active error compensation, which exploits a new measurement system able to provide real-time measurement of the displacement field of a given structural component, without any model about its dynamic/thermal structural behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have