Abstract
As the core component of microbial fuel cells, the conductivity and biocompatibility of anode are hard to achieve simultaneously but significantly influence the power generation performance and the overall cost of microbial fuel cells. Stainless steel felt has a low price and high conductivity, making it a potential anode for the large-scale application of microbial fuel cells. However, its poor biocompatibility limits its application. This study provides a one-step binder-free modification method of a stainless steel felt anode with reduced graphene oxide to retain the high conductivity while greatly improving biocompatibility. The maximum power density achieved by reduced graphene oxide modified stainless steel felt was 951.89 mW/m2, 5.49 and 1.91 times higher than the unmodified stainless steel felt anode and reduced graphene oxide coated stainless steel felt by Nafion, respectively. The robust reduced graphene oxide modification markedly improved the biocompatibility by forming a uniform biofilm and utilizing the high conductivity of reduced graphene oxide to enhance the charge transfer rate. It led to 92.7 and 37.9% decreases in charge transfer resistance of reduced graphene oxide modified stainless steel felt compared to the unmodified one and the anode modified with reduced graphene oxide by Nafion, respectively. The excellent performance and green synthesis method of the anode validated its potential as a high-performance anode material for scaled-up microbial fuel cell applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have