Abstract

In this paper, we discuss the impact of optimized pupil engineering and photon noise on native defect sensitivity in EUV actinic blank inspection. Native defects include phase-dominated defects, absorber defects, and defects with a combination of phase and absorption behavior. First, we extend the idea of the Zernike phase contrast (ZPC) method and study the impact of optimum phase shift in the pupil plane on native defect sensitivity, showing a 23% signal-to-noise ratio (SNR) enhancement compare to bright field (BF) for a phase defect with 20% absorption. We also describe the possibility to increase target defect SNR on target defect sizes at the price of losing the sensitivity on smaller (non-critical) defects. Moreover, we show the advantage of the optimized phase contrast (OZPC) method over BF EUV actinic blank inspection. A single focus scan from OZPC has better inspection efficiency over BF. Second, we make a detailed comparison between the phase contrast with apodization (AZPC) method and dark field (DF) method based on defect sensitivity in the presence of both photon shot noise and camera noise. Performance is compared for a variety of photon levels, mask roughness conditions, and combinations of defect phase and absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call