Abstract

In this paper, we present an experimental verification of Zernike phase contrast enhanced EUV multilayer (ML) blank defect detection using the SHARP EUV microscope. A programmed defect as small as 0.35 nm in height is detected at focus with signal to noise ratio (SNR) up to 8. Also, a direct comparison of the through-focus image behavior between bright field and Zernike phase contrast for ML defects ranging from 40 nm to 75 nm in width on the substrate is presented. Results show the advantages of using the Zernike phase contrast method even for defects with both phase and absorption components including a native defect. The impact of pupil apodization combined with Zernike phase contrast is also demonstrated, showing improved SNR is due to the stronger reduction of roughness dependent noise than defect signal, confirming our previous simulation results. Finally we directly compare Zernike phase contrast, dark field and bright field microscopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.