Abstract

The Two-Stage forest fire spread prediction methodology was developed to enhance forest fire evolution forecast by tackling the uncertainty of some environmental conditions. However, there are parameters, such as wind, that present a variation along terrain and time. In such cases, it is necessary to couple forest fire propagation models and complementary models, such as meteorological forecast and wind field models. This multi-model approach improves the accuracy of the predictions by introducing an overhead in the execution time. In this paper, different multi-model approaches are discussed and the results show that the propagation prediction is improved. Exploiting multi-core architectures of current processors, we can reduce the overhead introduced by complementary models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.