Abstract

Abstract The present study explores the application of static shoulder friction stir welding (SSFSW) to address the challenges of poor mechanical properties in conventional Al-Ti dissimilar friction stir joints, which arise due to significant material mixing and the formation of thick intermetallic layers. The results show that SSFSW inhibited material mixing and the mutual diffusion of Al and Ti were suppressed due to lower heat input. Mutual interdiffusion of Al and Ti was directed by an exothermic chemical reaction, forming an Al5Ti2 – Al3Ti sequence due to sluggish diffusion of Al in Ti at a temperature of 512°C achieved in this study. The microstructure at stir zone (SZ) comprised equiaxed grains with Ti particles acting as dispersoids for nucleation, whereas the presence of large Ti blocks at SZ of Conventional FSW (CFSW) resisted plastic deformation, resulting in non-homogeneous concentration of dislocations near its interface. A significant decrease in grain size at all the critical zones of weldment was due to rearrangement of dislocations through slip-and-climb mechanism, as evidenced by the occurrence of dynamic recrystallization. Emergence of γ-fiber and basal fiber texture increased the tensile strength of SSFSW to 289 MPa, which is about 11.2% higher than CFSW, with joint efficiency of about 88%. The study also analysed the contribution of various strengthening mechanisms to the yield strength improvement of SSFSW weldments in detail of SSFSW weldments in detail, and the results showed that grain boundary strengthening contributed the most to strength improvement in SSFSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call