Abstract
Microplastics (MPs) pollution has emerged as a pressing environmental concern in recent years. Owing to their minute dimensions, conventional plastic remediation approaches are inadequate for addressing the challenges posed by MPs. Herein, spherical (BOC-S) and nanosheet (BOC-N) BiOCl photocatalysts were prepared and applied to the degradation of poly(ethylene terephthalate) (PET) MPs after hydrothermal pretreatment. The results indicated that the degradation efficiency of pretreated PET MPs using BOC-S and BOC-N photocatalysts was 8.8 and 6.9 times that of the unpretreated MPs under the same conditions. Comparative experiments confirmed the excellent performance of the photocatalysis-pretreatment system. The creation of pores on the surface of pretreated PET MPs facilitates the entry of active substances into the interior to cause damage, while the enhancement of hydrophilicity and specific surface area facilitates the contact between the catalyst and PET MPs, thus increasing the degradation efficiency. Free radical trapping experiments revealed that hydroxyl radicals (·OH) produced by photocatalysis had the greatest influence on the degradation performance of pretreated PET MPs. Finally, a possible photocatalytic degradation mechanism for PET MPs was proposed. This research offers a novel perspective on MPs degradation, providing valuable insights for advancing the efficacy of the process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have