Abstract

AbstractNitrogen‐doped graphitic carbon materials have been widely used as a catalyst support in the methanol oxidation reaction (MOR). In this study, we report the role of three‐dimensionally architectured in‐situ N‐doped vertically aligned carbon nanofibers (VACNF) as a catalyst support for MOR in acidic and alkaline media. The abundant graphitic edge sites at the sidewall of N‐doped VACNF strongly anchor the deposited platinum group metal (PGM) catalysts and induce a partial electron transfer between the PGM catalysts and support. Density Functional Theory (DFT) calculations reveal that the strong metal‐support interaction substantially increases the adsorption energy of OH, particularly near the N‐doping sites, which helps to compete and remove the adsorbed intermediate species generated during MOR. The PGM catalysts on N‐doped VACNF support exhibits CO stripping at lower potentials comparing to the commercial Vulcan carbon support and presents an enhanced electrocatalytic performance and better durability for MOR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.