Abstract
A commercialized and widely applied nanofiltration membrane, NF90, was in-situ modified through a surface grafting modification method by using 3-sulfopropyl methacrylate potassium salt and initiators. The effects of water electrical conductivity (EC) and fouling types on membrane separation efficiency were examined before and after membrane modification. Results reveal that both the pristine membrane (PTM) and surface grafting modification membrane (SGMM) had a declining permeate flux and salt (NaCl) removal efficiency but an increasing trend of pharmaceuticals and personal care products (PPCPs) removal with increasing water EC from 250 to 10,000 μs cm−1. However, SGMM exhibited a slightly declining permeate flux but 13%–17% and 1%–42% higher rejection of salt and PPCPs, respectively, compared with PTM, due to electrostatic repulsion and size exclusion provided by the grafted polymer. After sodium alginate (SA) and humic acid (HA) fouling, SGMM had 17%–26% and 16%–32% higher salt rejection and 1%–12% and 1%–51% greater PPCP removal, respectively, compared with PTM due to the additional steric barrier layer contributed by the foulants. The successful grafting and increasing hydrophilicity of the SGMM were confirmed by contact angle analysis, which was beneficial for mitigating membrane fouling. Overall, the proposed in-situ surface grafting modification of NF90 can considerably mitigate organic and biological fouling while raising the rejection of salt and PPCPs at different background water EC, which is beneficial for practical applications in producing clean and high quality water for consumers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have