Abstract

This study explores the mechanical properties of graphene/aluminum (Gr/Al) nanocomposites through nanoindentation testing performed via molecular dynamics simulations in a large-scale atomic/molecular massively parallel simulator (LAMMPS). The simulation model was initially subjected to energy minimization at 300 K, followed by relaxation for 50 ps under the NPT ensemble, wherein the number of atoms (N), simulation temperature (T), and pressure (P) were conserved. After the model was fully relaxed, loading and unloading simulations were performed. This study focused on the effects of the Gr arrangement with a brick-and-mortar structure and incorporation of high-entropy alloy (HEA) coatings on mechanical properties. The findings revealed that Gr sheets (GSs) significantly impeded dislocation propagation, preventing the dislocation network from penetrating the Gr layer within the plastic zone. However, interactions between dislocations and GSs in the Gr/Al nanocomposites resulted in reduced hardness compared with that of pure aluminum. After modifying the arrangement of GSs and introducing HEA (FeNiCrCoAl) coatings, the elastic modulus and hardness of the Gr/Al nanocomposites were 83 and 9.5 GPa, respectively, representing increases of 21.5% and 17.3% compared with those of pure aluminum. This study demonstrates that vertically oriented GSs in combination with HEA coatings at a mass fraction of 3.4% significantly enhance the mechanical properties of the Gr/Al nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.