Abstract
This study investigates the effectiveness of a Low-Cost Single-Channel BCI system in improving mathematical learning outcomes, self-efficacy, and alpha power in university students. Eighty participants were randomly assigned to either a BCI group receiving real-time neurofeedback based on alpha rhythms or a sham feedback group. Results showed that the BCI group had significantly higher mathematical performance, self-efficacy, and alpha power compared to the sham feedback group. Mathematics performance, alpha wave intensity, and self-efficacy showed significant positive correlations after training, indicating that neurofeedback training may have promoted their interaction and integration. These findings demonstrate the potential of BCI technology in enhancing mathematical learning outcomes and highlight the importance of considering pre-test performance and self-efficacy in predicting learning outcomes, with implications for personalized learning interventions and the integration of BCI technology in educational settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.