Abstract

Office stationery stores facilitate operations for offices, schools, and businesses. However, the store owner must overcome the challenge of selecting the right products for promotion. This research aims to tackle this issue by comparing the performance of the Equivalence Class Transformation algorithms in discovering association rules using Support, confidence, and lift ratios. The findings reveal that the algorithm generates association rules based on Support, confidence, and lift values. Ten critical rules are identified, shedding light on algorithm effectiveness. Ultimately, this study underscores the significance of refining marketing approaches for brick-and-mortar stationery businesses and the value of data-driven methods in aiding decision-making. In the early promotion catalog phase, priority is assigned to rules with solid agreement by the Shop Owner, guiding the selection of featured items based on robust product associations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.