Abstract

Major Depressive Disorder (MDD) is a debilitating, complex mental condition with unclear mechanisms hindering diagnostic progress. Research links MDD to abnormal brain connectivity using functional magnetic resonance imaging (fMRI). Yet, existing fMRI-based MDD models suffer from limitations, including neglecting dynamic network traits, lacking interpretability, and struggling with small datasets. We present DSFGNN, a novel graph neural network framework addressing these issues for improved MDD diagnosis. DSFGNN employs a graph isomorphism encoder to model static and dynamic brain networks, achieving effective fusion of temporal and spatial information through a spatiotemporal attention mechanism, thereby enhancing interpretability. Furthermore, we incorporate a causal disentangling module and orthogonal regularization module to augment the model's expressiveness. We evaluate DSFGNN on the Rest-meta-MDD dataset, yielding superior results compared to the best baseline. Besides, extensive ablation studies and interpretability analysis confirm DSFGNN's effectiveness and potential for biomarker discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.