Abstract

Cardiac myocytes undergo programmed cell death as a result of ischemia/reperfusion (I/R). One feature of I/R injury is the increased presence of autophagosomes. However, to date it is not known whether macroautophagy functions as a protective pathway, contributes to programmed cell death, or is an irrelevant event during cardiac I/R injury. We employed simulated I/R of cardiac HL-1 cells as an in vitro model of I/R injury to the heart. To assess macroautophagy, we quantified autophagosome generation and degradation (autophagic flux), as determined by steady-state levels of autophagosomes in relation to lysosomal inhibitor-mediated accumulation of autophagosomes. We found that I/R impaired both formation and downstream lysosomal degradation of autophagosomes. Overexpression of Beclin1 enhanced autophagic flux following I/R and significantly reduced activation of pro-apoptotic Bax, whereas RNA interference knockdown of Beclin1 increased Bax activation. Bcl-2 and Bcl-x(L) were protective against I/R injury, and expression of a Beclin1 Bcl-2/-x(L) binding domain mutant resulted in decreased autophagic flux and did not protect against I/R injury. Overexpression of Atg5, a component of the autophagosomal machinery downstream of Beclin1, did not affect cellular injury, whereas expression of a dominant negative mutant of Atg5 increased cellular injury. These results demonstrate that autophagic flux is impaired at the level of both induction and degradation and that enhancing autophagy constitutes a powerful and previously uncharacterized protective mechanism against I/R injury to the heart cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.