Abstract

Residual current protection can detect and isolate the grounding (leakage) fault of low-voltage distribution networks in time, which is an essential technical measure to reduce electric shocks and fire accidents and improve power supply safety. This paper systematically analyzes the operating characteristics of low-voltage distribution networks and proposes a distributed residual current protection method based on closed sections. It utilizes the capabilities of a distribution IoT platform to provide comprehensive measurement information for the entire substation area. A method was introduced to divide the low-voltage distribution substation into different protection closed surfaces, defining the current phasor at the external contact point of the closed surface and the remaining current of the closed surface. A calculation method for the critical current based on the remaining current of the closed surface for fault detection was proposed. Case studies have shown that this method is less affected by the inherent current and can significantly improve the sensitivity of protection. For TN-C and TN-C-S systems, in the selection of closed surfaces, the repeated grounding point of the neutral line is excluded from the closed surface. This method can also overcome the impact of residual current changes when load switching, demonstrating the flexibility of the new principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.