Abstract

ABSTRACT The rise of e-commerce has transformed last-mile delivery, with companies’ prioritising faster, more flexible options and implementing innovations such as route optimisation. Efficient last-mile delivery is now critical to customer satisfaction and business success. This work aims to bridge the gap between planned and actual delivery routes, a challenge highlighted by the 2021 Amazon Last-Mile Routing Research Challenge. The solution uses a sophisticated hybrid approach, combining machine learning algorithms with automated hyperparameter optimisation. Instead of focusing on individual stops, it predicts sequences of zones. The process involves data pre-processing, a Prediction by a Partial Matching algorithm to identify optimal zone combinations, a Rollout Algorithm to compute zone sequences for unexplored routes, and a Lin-Kernighan-Helsgaun solver for zone-to-zone routing. These steps are seamlessly integrated into a repeatable pipeline that automates hyperparameter fine-tuning. The results obtained indicate a robust solution capable of producing high-quality predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.