Abstract

Image classification, especially in scenarios with limited data, presents significant challenges. Few shot learning (FSL) aims to address these challenges by training models that can generalize from a few examples. This paper explores the integration of prototypical networks with ResNet-18 for feature extraction to enhance image classification accuracy. Prototypical networks are designed to create a prototype representation for each class, which can then be used to classify new examples based on their distance to these prototypes. By leveraging ResNet-18's powerful feature extraction capabilities, we aim to improve the quality of these prototypes, thereby enhancing classification performance.We propose various methods for accuracy enhancement and optimization, including hyperparameter tuning, regularization techniques, and advanced methods like attention mechanisms and metric learning. Hyperparameter tuning involves adjusting the model's parameters to find the optimal settings that yield the best performance. Regularization techniques, such as dropout and weight decay, help prevent overfitting and improve the model's generalization capabilities. Advanced methods like attention mechanisms can focus on the most relevant parts of the image, while metric learning aims to learn a distance metric that better reflects the similarities between images.Our experiments on datasets like Mini-ImageNet and Omniglot demonstrate significant improvements in classification performance. These datasets are commonly used benchmarks in the few-shot learning community, allowing us to compare our results with existing methods. The integration of prototypical networks with ResNet-18, along with the proposed optimization techniques, provides a robust approach for tackling the challenges of image classification in few-shot learning scenarios. Key Words: Few-shot learning, ResNet-18, Prototypical Networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.