Abstract

This study assesses the effects of different polytetrafluoroethylene (PTFE) particle sizes and concentrations on the performance of dual-layer membranes in direct contact membrane distillation (DCMD). Specifically, particle sizes of 0.5 μm, 1 μm, and 6 μm were systematically evaluated at concentrations of 0 wt%, 2 wt%, 4 wt%, and 6 wt%. Comprehensive analyses, including scanning electron microscopy (SEM), liquid entry pressure (LEP), contact angle, thermogravimetric analysis (TGA), mercury intrusion porosimetry (MIP), atomic force microscopy (AFM), permeate flux, nitrogen gas permeation, and salt rejection, were employed to characterize the membranes. Under conditions of a feed temperature of 70 °C and a salt concentration of 8000 ppm for a 24 h duration, the results clearly indicated that a 0.5 μm PTFE particle size combined with a 6 wt% concentration exhibited the highest performance. This configuration achieved a permeate flux of 11 kg·m2/h and a salt rejection rate of 99.8%. The outcomes of this research have significant implications for the optimization of membranes used in DCMD applications, with potential benefits for sustainable water treatment and energy conservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call