Abstract
Handwritten Text Recognition (HTR) is a challenging task due to the complex structures and variations present in handwritten text. In recent years, the application of gated mechanisms, such as Long Short-Term Memory (LSTM) networks, has brought significant advancements to HTR systems. This paper presents an overview of HTR using a gated mechanism and highlights its novelty and advantages. The gated mechanism enables the model to capture long-term dependencies, retain relevant context, handle variable length sequences, mitigate error propagation, and adapt to contextual variations. The pipeline involves preprocessing the handwritten text images, extracting features, modeling the sequential dependencies using the gated mechanism, and decoding the output into readable text. The training process utilizes annotated datasets and optimization techniques to minimize transcription discrepancies. HTR using a gated mechanism has found applications in digitizing historical documents, automatic form processing, and real-time transcription. The results show improved accuracy and robustness compared to traditional HTR approaches. The advancements in HTR using a gated mechanism open up new possibilities for effectively recognizing and transcribing handwritten text in various domains. This research does a better job than the most recent iteration of the HTR system when compared to five different handwritten datasets (Washington, Saint Gall, RIMES, Bentham and IAM). Smartphones and robots are examples of low-cost computing devices that can benefit from this research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.