Abstract

Carbon fiber composite's high specific strength makes it incredibly useful for structural applications. However, their low strain-to-failure can be problematic in structural applications that can potentially see high strain conditions or high fatigue cycles resulting in sudden, catastrophic failure. This is further complicated by damage manifesting within the composite thus not showing damage indicators on the surface. Therefore, monitoring the structural integrity and strain history of the composite in application by itself―while maintaining positive composite performance―is vital to ensure safe operation. Here, a homogeneous dispersion of TiO2 nanoparticles on carbon fiber is demonstrated to generate a piezoresistive carbon fiber polymer matrix composite with enhanced self-sensing capabilities. The nanoparticle-embedded composites also exhibited superior strength and damping potential compared to the nanoparticle-free composites. The apparent interlaminar shear strength increased by up to 15% and the damping loss factor increased by an average of 150% while the piezoresistive sensitivity increased by up to 180% with the addition of a small weight fraction of nanoparticles to the fiber surface. These results demonstrate an approach to simultaneously improve the sensing capabilities, damping behavior and mechanical strength of carbon fiber composites by simply adding nanoparticles in the fiber sizing using a commercially scalable deposition method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call