Abstract
Flood susceptibility maps are useful tool for planners and emergency management professionals in the early warning and mitigation stages of floods. In this study, Sentinel-1 dB radar images, which provide Synthetic-Aperture Radar (SAR) data were used to delineate flooded and non-flooded locations. 12 input parameters, including elevation, lithology, drainage density, rainfall, Normalized Difference Vegetation Index (NDVI), curvature, ground slope, Stream Power Index (SPI), Topographic Wetness Index (TWI), soil, Land Use Land Cover (LULC), and distance from the river, were selected for model development. The importance of each input parameter on flood occurrences was assessed via the Mutual Information (MI) technique. Several machine learning models, including Radial Basis Function (RBF), and three hybrid models of Bagging (BA-RBF), Random Committee (RC-RBF), and Random Subspace (RSS-RBF), were developed to delineate flood susceptibility areas at Goorganrood watershed, Iran. The performance of each model was evaluated using several error indicators, including correlation coefficient (r), Nash Sutcliffe Efficiency (NSE), Mean Absolute Error (MSE), Root Mean Square Error (RMSE), and the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). The results showed that the hybrid techniques enhanced the modeling performance of the standalone model, and generally, all hybrid models are more accurate than the standalone model. Although all developed models have performed well, RC-RBF outperforms all of them (AUC = 0.997), followed by BA-RBF (AUC = 0.996), RSS-RBF (AUC = 0.992), and RBF (AUC = 0.975). Generally, about 12 % of the study area has high and very high susceptibility to future flood occurrences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have