Abstract

This study integrates fuzzy logic-controlled data switching and the radial basis function neural network (RBFNN) for fault detection and classification in grid-tied solar energy systems. The fuzzy logic controller filters out invalid sensor data through a data switch, ensuring that the fault detection and classification system receives reliable input. Training data were prepared through data normalization using the z-score function and principal component analysis, thereby reducing data complexity and standardizing the inputs. The resulting RBFNN model exhibited a low mean squared error with a value of 7.67×10-4, indicating its ability to classify faults based on the actual system scenarios. Performance evaluation metrics, including accuracy, precision, recall, and F1-score, were used to assess the effectiveness of the RBFNN model. The model demonstrated high accuracy (96.4%), precision (98.281%), recall (98.013%), and F1-score (98.147%), indicating the suitability and effectiveness of the RBFNN model to identify and classify faults in grid-tied solar energy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.