Abstract

We show that the strong coupling of a quantum light field and correlated quantum matter induces exotic quantum fluctuations in the matter sector. We determine their spectral characteristics and reveal the impact of the atomic s-wave scattering. In particular, we derive the dissipative Landau and Beliaev processes from the microscopic Hamiltonian using imaginary-time path integrals. By this, their strongly sub-Ohmic nature is revealed analytically. A competition between damping and antidamping channels is uncovered. Their intricate influence on physical observables is quantified analytically and the Stokes shift of the critical point is determined. This illustrates the tunability of the quantum matter fluctuations by exploiting strong light-matter coupling. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.