Abstract
L-DOPA and manganese both induce oxidative stress-mediated apoptosis in catecholaminergic PC12 cells. In this study, exposure of PC12 cells to 0.2 mM MnCl2 or 10-20 microM L-DOPA neither affected cell viability, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, nor induced apoptosis, tested by flow cytometry, fluorescence microscopy, and the TUNEL technique. L-DOPA (50 microM) induced decreases in both cell viability and apoptosis. When 0.2 mM MnCl2 was associated with 10, 20, or 50 microM L-DOPA, a concentration-dependent decrease in cell viability was observed. Apoptotic cell death also occurred. In addition, manganese inhibited L-DOPA effects on dopamine (DA) metabolism (i.e., increases in DA and its acidic metabolite levels in both cell lysate and incubation medium). The antioxidant N-acetyl-L-cysteine significantly inhibited decreases in cell viability, apoptosis, and changes in DA metabolism induced by the manganese association with L-DOPA. An increase in autoxidation of L-DOPA and of newly formed DA is suggested as a mechanism of manganese action. These data show that agents that induce oxidative stress-mediated apoptosis in catecholaminergic cells may act synergistically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.