Abstract

We study the influence of He+ irradiation induced interface intermixing on magnetic domain wall (DW) dynamics in W-CoFeB (0.6 nm)-MgO ultrathin films, which exhibit high perpendicular magnetic anisotropy and large Dzyaloshinskii-Moriya interaction (DMI) values. Whereas the pristine films exhibit strong DW pinning, we observe a large increase in the DW velocity in the creep regime upon He+ irradiation, which is attributed to the reduction of pinning centers induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. Our findings provide insights into the material design and interface control for DW dynamics, as well as for DMI, enabling the development of high-performance spintronic devices based on ultrathin magnetic layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call