Abstract

The development of photocatalysts has an influential role in solving the environmental pollution crisis. Herein, the two different noble metals of silver (Ag)/ruthenium (Ru) were separately decorated on cadmium sulfide (CdS) photocatalysts by novel chemical methods. Characterization tests confirmed the formation of Ag/Ru-decorated CdS with spherical morphologies. According to the DRS and PL experiments, Ru-decorated CdS accounted for the highest light absorbance and the most accelerated transfer and detachment of photoelectrons/holes, followed by Ag-decorated CdS compared to pure CdS, which brought proper optical properties of Ag/Ru-decorated CdS. The photodecomposition of methylene blue (MB)/rhodamine B (RhB) as dyes and phenol as a colorless pollutant in the presence of Ag-decorated CdS (96%, 95%, and 69%) and Ru-decorated CdS (100%, 100%, and 80%) exposed to visible light radiation climbed compared to pure CdS (80%, 67%, and 61%) respectively. The influence of various parameters on the MB/RhB photocatalytic activity was investigated. The quenching experiment determined the functions of active species. Finally, experimental results proved that the MB/RhB photodecomposition by Ag/Ru-decorated CdS followed the pseudo-first-order kinetic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call