Abstract

The surfactant free cadmium sulfide (CdS) nanospheres were synthesized by the chemical method in a single step. The uniform shape of CdS spheres was controlled by the variation of concentration of thioacetamide (C2H5NS). The cubic phase of CdS nanopowder was determined from XRD analysis, which closely matched to the standard card. The spherical grains of CdS powder were confirmed from the microstructural analysis. The concentration of thioacetamide (TAA) played a vital role in the formation of nanospheres. The bandgap of CdS nanospheres decreased from 2.44 to 2.22 eV as the mole concentration of C2H5NS increased from 0.05 M to 2.0 M. FTIR spectra confirmed the presence of the stretching bond of CdS. The dominant PL peak of purely and uniformed CdS nanospheres was observed at 528 nm due to S vacancies or surface defects. The prepared photocatalyst demonstrated the superior visible light photocatalytic degradation of methylene blue (MB). The highest degradation (96%) of MB was achieved within 180 min. Therefore, CdS nanospheres grown in the single step by the chemical method has a remarkable enhancement in the degradation of pollutants under irradiation of visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.