Abstract

The Internet of Things (IoT) has revolutionized the healthcare industry by enabling the seamless integration of medical devices, sensors, and data-driven applications. However, the large influx of sensitive healthcare data and the proliferation of linked devices have caused grave worries about data security and privacy. Traditional centralized security systems are unable to handle the changing threats and problems in the IoT healthcare setting. This study suggests a novel strategy for boosting data security in the healthcare industry that makes use of blockchain technology. The main goal of this research is to develop and deploy a trustworthy framework that safeguards private healthcare information in IoT networks. Blockchain, as a distributed and decentralized ledger, offers inherent security features such as immutability, transparency, and cryptographic mechanisms. In this research, it is suggested that healthcare data be gathered via the IoT and stored in the Interplanetary File System (IPFS) using Ethereum-based blockchain technology for data security. The suggested method creates a reliable environment for managing healthcare data by exploiting the special features of blockchain. The json and jpeg files are utilized five times on a distributed database housed on IPFS and a centralized database hosted on Firebase, and the upload and download times are recorded. For IoT-based healthcare systems, we have also investigated the cost and length of time required to implement smart contracts on blockchain platforms like Rinkeby, Binance, and Matic. This research suggests implementing the Blockchain platform in an IoT-based healthcare system to provide data confidentiality, integrity, and accessibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call