Abstract
The conventional mechanical grinding approach for diamond tools, which is characterised by constant pressure and influenced by the pronounced anisotropy of single-crystal diamonds, faces challenges in precisely controlling the material removal rate on the tool’ flank face. This leads to uncertainties in both the processing quality and efficiency. To achieve ultra-precision manufacturing of rounded diamond cutting tools, this study meticulously explored the anisotropic characteristics of the material removal rate. An innovative in situ feature identification method is proposed to determine the process parameters for ultra-precision grinding processes with controlled removal rates. Experimental investigations scrutinized the intricate relationship between the model and the output current signal of the feed guide. Significantly, through the dynamic adjustment of the output current of the guide, the controllable grinding process achieved the successful production of ultra-precision tools, showing a remarkable profile error of <50 nm. These findings provide invaluable insights into ultra-precision machining, particularly in addressing the challenges posed by anisotropic diamond materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.