Abstract

Abstract Morphology of nanoclay dispersed in resin and suspended in acetone was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images show intercalation of resin in the gallery spaces of nanoclay and regions of exfoliated clay with random orientation. A vacuum assisted wet lay-up (VAWL) process was used for the inclusion of nanoclay in conventional fiber reinforced composites. The VAWL specimen displayed improvement in off-axis compressive strength for nanoclay enhanced fiber composites. Addition of nanoclay produced a substantial increase in longitudinal compressive strengths (extracted from off-axis tests) of glass fiber reinforced composites. An elastic–plastic model was used to predict the compressive strength of fiber reinforced composites based on the matrix properties. The model predictions matched well with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.