Abstract

The benefits of high-performance unidirectional carbon fiber composites are limited in many cost-driven industries due to the high cost relative to alternative reinforcement fibers. Low-cost carbon fibers have been previously proposed, but the longitudinal compressive strength continues to be a limiting factor or studies are based on simplifications that warrant further analysis. A micromechanical model is used to (1) determine if the longitudinal compressive strength of composites can be improved with noncircular carbon fiber shapes and (2) characterize why some shapes are stronger than others in compression. In comparison to circular fibers, the results suggest that the strength can be increased by 10%–13% by using a specific six-lobe fiber shape and by 6%–9% for a three-lobe fiber shape. A slight increase is predicted in the compressive strength of the study two-lobe fiber but has the highest uncertainty and sensitivity to fiber orientation and misalignment direction. The underlying mechanism governing the compressive failure of the composites was linked to the unique stress fields created by the lobes, particularly the pressure stress in the matrix. This work provides mechanics-based evidence of strength improvements from noncircular fiber shapes and insight on how matrix yielding is altered with alternative fiber shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call