Abstract

Recent research has increasingly focused on the potential applications of carbon nanotube (CNT) hybrid composites in wearable sensor technologies. Piezoresistivity, which is characterized by the ability to detect alterations in electrical resistance in response to external forces, is a pivotal attribute of resistive sensors. Numerous studies have attempted to improve this performance by incorporating secondary fillers. Despite extensive efforts to comprehend the influence of the dimensions of secondary fillers on electrical conductivity under static and dynamic conditions, notable confusion persists in the literature regarding the comparative analysis of the effects of nano- and microscale secondary fillers. In this study, two distinct sizes of silica particles were introduced as secondary fillers in CNT/polymer composites, followed by a rigorous comparative analysis of their mechanical and electrical properties under static conditions. Furthermore, this study assessed the influence of the silica particle size on the electrical resistance under dynamic tensile conditions, elucidating its impact on the conductive network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call