Abstract

Oil spill cleanup and subsequent restoration of the environment is majorly a function of spill cleanup methods applied. Some of these methods, though efficient, are, however, very expensive and require more personnel for their application and relative deployment in the field. The study was aimed at examining the efficiency of a locally and readily available, eco-friendly and low cost agricultural waste (coconut husk coir) as sorbent materials for spilled engine oil cleanup under static and dynamic marine water conditions. The sorbent material was prepared and used in three forms: raw coconut husk coir (CHC), modified coconut husk coir (MCHC), and reused coconut husk coir (RCHC). Under static and dynamic marine water conditions, oil sorption batch equilibrium experiments were used to study the engine oil sorption capacity and efficiency of the sorbent. Effects of sorbent dosage and sorption times on the oil sorption and efficiency of CHC, MCHC, and RCHC were studied and determined. At a constant sorption time of 60 minutes and varying sorbent dosages of 2-8 /320 ml of engine oil-marine water concentration, MCHC exhibited the highest oil sorption efficiency of 61.18% and 44.33% for dynamic and static conditions, CHC had 55.61% and 38.50% for dynamic and static conditions, whereas RCHC had 41.66% and 26.04% for dynamic and static conditions, respectively. It is statistically deduced from the results that sorption times and sorbent dosages have significant effects on the sorption efficiency of experimental coir for spilled engine oil removal. Though there is a need for proper blending or modifications of the sorbent material to enhance its affinity to oil and hydrophobicity, there are enough potentials in the materials for mild marine water current spilled engine oil cleanup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call