Abstract

We synthesized a temperature-responsive ionic liquid, [N4444][SS], and incorporated it into an environmentally friendly cellulose acetate (CA)-based battery separator. A pore was formed in the battery separator by [N4444][SS], which pierced a plasticized part due to water pressure. Varying drying temperatures during membrane fabrication revealed that the CA/[N4444][SS] membrane dried at 50 °C exhibited greater thickness and a smaller average pore size, resulting in an asymmetric internal structure. Despite the asymmetry, this membrane demonstrated significantly higher water flux and a lower Gurley value compared to the membrane dried at 25 °C, indicating minimal tortuosity and low resistance within the internal pores. Thermal behavior analysis through TGA and DSC, as well as FT-IR spectroscopy, confirmed that [N4444][SS] remains within the CA matrix, forming coordinative bonds. The findings suggest that the CA/[N4444][SS] membrane, when used as a Li-ion battery separator, could enhance Li-ion transport properties and conductivity. Moreover, the recyclability of the IL in the membrane fabrication process contributes to a more environmentally friendly approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call