Abstract

Malignancies of the CNS are difficult to treat because the blood-brain barrier (BBB) prevents most therapeutics from reaching the intracranial lesions at sufficiently high concentrations. This also applies to chimeric antigen receptor (CAR) T cells, for which systemic delivery is inferior to direct intratumoral or intraventricular injection of the cells. The authors previously reported on a novel approach to safely and reversibly open the BBB of mice by applying intra-arterial (IA) injections of NEO100, a pharmaceutical-grade version of the natural monoterpene perillyl alcohol. The authors hypothesized that this method would enable enhanced brain entry and therapeutic activity of intravenously delivered CAR T cells, which the authors tested in a mouse model of CNS lymphoma. Human Raji lymphoma cells were implanted into the brains of immune-deficient mice. After tumor uptake was confirmed with bioluminescent imaging, 0.3% NEO100 was injected intra-arterially, which was followed by intravenous (IV) delivery of CD19-targeted CAR T cells. After this single intervention, tumor growth was monitored with imaging, long-term survival of mice was recorded, and select mice were euthanized to analyze the distribution of CAR T cells in brain tissue. Intravenously injected CAR T cells could be readily detected in brain tumor areas after IA injection of NEO100 but not after IA injection of the vehicle (without NEO100). Although all untreated control animals died within 3 weeks, all mice that received IA NEO100 followed by IV CAR T cells survived and thrived for 200 days, when the experiment was terminated. Of the mice that received IV CAR T cells without prior IA NEO100, 3 died within 3 weeks and 2 survived long-term. BBB opening by IA NEO100 facilitates brain entry of intravenously delivered CD19 CAR T cells. The long-term survival of all mice with CNS lymphoma, along with the disappearance of the tumor as determined with imaging, suggests that this one-time therapeutic intervention was curative. BBB opening by IA NEO100 may offer a novel option to increase brain access by CAR T cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call