Abstract
Abstract Patients treated with chimeric antigen receptor (CAR) T cells targeting CD19 for B cell malignancies have experienced rapid and durable tumor regressions. Manufacture of CAR T cells for treatment requires ex vivo culture to facilitate CAR gene transfer and to achieve a therapeutic dose of the modified cells. Recent data suggests that specific T cell subtypes can provide enhanced anti-tumor efficacy, spurring efforts to optimize the production of therapeutic T cells via the cumbersome physical isolation of central memory T cells or culture in cytokines such as IL-7 and IL-15. Here we explored the potential for a simple culture modification to improve the therapeutic potential of CAR T cells without adding manufacturing complexity. To this end, we produced CAR T cells specific to B cell maturation antigen (BCMA) using standard IL-2 culture conditions supplemented with a PI3K inhibitor, or with IL-7 and IL-15 in place of IL-2. The in vivo activity of CAR T cells was studied in mouse models of human Burkitt's lymphoma (Daudi) and multiple myeloma (RPMI-8226), both of which express BCMA. In the Daudi model, NSG mice were injected intravenously with 2 × 106 tumor cells and allowed to accumulate a large tumor burden to model late stage disease observed in relapsed and refractory lymphoma. In this advanced disease model, anti-BCMA CAR T cells (4 × 106/mouse) cultured either in IL-2 or IL-7 and IL-15 had little or no effect on tumor growth (p = 0.22 and 0.23, respectively) and all mice succumbed to tumors within two weeks of treatment. In contrast, all animals treated with the same number of anti-BCMA CAR T cells cultured with PI3K inhibition survived and had complete long-term tumor regression (p = 0.003). The same anti-BCMA CAR T cells were studied in a model of multiple myeloma. NSG mice were injected subcutaneously with 107 RPMI-8226 cells and 22 days later received a single administration of anti-BCMA CAR T cells (4 × 105/mouse) cultured under various conditions. In this model, tumor regression occurred regardless of in vitro culture conditions. To model tumor relapse and evaluate CAR T cell durability, surviving animals were re-challenged with RPMI-8226 cells on the opposite flank two weeks after initial tumor clearance. In contrast to other conditions, all animals treated with anti-BCMA CAR T cells cultured with PI3K inhibition were protected against subsequent tumor challenge (p = 0.005). This improved therapeutic activity of anti-BCMA CAR T cells cultured with PI3K inhibition was associated with an increased frequency of CD62L+ CD8+ T cells in the drug product (p < 0.001) suggesting enrichment of this distinct CD8 T cell subset. These data suggest that inhibition of PI3K during ex vivo expansion with IL-2 may generate an improved anti-BCMA CAR T cell product for clinical use. Furthermore, this approach could potentially be used in the manufacture of other T cell therapies. Citation Format: Shannon Grande, Molly R. Perkins, Amanda Hamel, Holly M. Horton, Fay Eng, Claire J. Rhodes, Tracy E. Garrett, Sara M. Miller, John W. Evans, Howard J. Latimer, Christopher Horvath, Michael Kuczewski, Kevin Friedman, Richard A. Morgan. Inhibition of the PI3K/Akt pathway during CAR T cell production results in enhanced efficacy across multiple in vivo tumor models. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2296.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.