Abstract

Background: Annotating large medical imaging datasets is an arduous and expensive task, especially when the datasets in question are not organized according to deep learning goals. Here, we propose a method that exploits the hierarchical organization of annotating tasks to optimize efficiency. Methods: We trained a machine learning model to accurately distinguish between one of two classes of lung ultrasound (LUS) views using 2908 clips from a larger dataset. Partitioning the remaining dataset by view would reduce downstream labelling efforts by enabling annotators to focus on annotating pathological features specific to each view. Results: In a sample view-specific annotation task, we found that automatically partitioning a 780-clip dataset by view saved 42 min of manual annotation time and resulted in additional relevant labels per hour. Conclusions: Automatic partitioning of a LUS dataset by view significantly increases annotator efficiency, resulting in higher throughput relevant to the annotating task at hand. The strategy described in this work can be applied to other hierarchical annotation schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.