Abstract

The interfacial fracture energy of screen‐printed silver nanopaste films is quantitatively measured, and the fundamental adhesion mechanism is investigated. It is found that the interfacial fracture energy at the Ag film/silicon substrate interface is critically affected by the sintering condition. The sintering temperature tunes the interfacial surface morphology of Ag films and the amount of organic residues at the interface. These factors determine the degree of interfacial toughening between the Ag film and the substrate, which directly affects the adhesion properties. The increased surface roughness of the Ag film with sufficient organic residues leads to a larger interfacial toughening at the film/substrate interface, and subsequently to an enhanced interfacial fracture energy of screen‐printed Ag nanopaste films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call