Abstract
Ocean exploration is crucial for utilizing its extensive resources. Images captured by underwater robots suffer from issues such as color distortion and reduced contrast. To address the issue, an innovative enhancement algorithm is proposed, which integrates Transformer and Convolutional Neural Network (CNN) in a parallel fusion manner. Firstly, a novel transformer model is introduced to capture local features, employing peak-signal-to-noise ratio (PSNR) attention and linear operations. Subsequently, to extract global features, both temporal and frequency domain features are incorporated to construct the convolutional neural network. Finally, the image’s high and low frequency information are utilized to fuse different features. To demonstrate the algorithm’s effectiveness, underwater images with various levels of color distortion are selected for both qualitative and quantitative analyses. The experimental results demonstrate that our approach outperforms other mainstream methods, achieving superior PSNR and structural similarity index measure (SSIM) metrics and yielding a detection performance improvement of over ten percent.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have