Abstract
We have measured the axial (z) and radial (x) distribution of the vacuum ultraviolet emission from excimer laser generated aluminum plasmas in vacuum and in 300 mTorr of argon. The ratio of the radiated line intensities (emission in a gas versus vacuum) on the z axis (i.e., x=0) increased exponentially with distance from the target surface for plasmas generated in a 300 mTorr argon ambient. The absolute line intensities increased linearly with the argon pressure and approximately linearly with the ambient gas atomic cross section when other rare gases were substituted. The line intensity radial distribution was broader for plasmas in argon than in vacuum and the magnitude of the effect increased monotonically with z. The spectral data obtained from plasmas in a gas ambient are discussed in terms of the diffusion of plasma electrons in an ionized gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.