Abstract
In this work, combined approach of torrefaction deoxygenation pretreatment (TDP) and shape selective catalytic fast pyrolysis (SS-CFP) using bifunctional catalyst (metal modified HZSM-5) were employed to improve the yield of bio-BTX derived from the renewable starting material of lignin. Results showed that after TDP, the oxygen element could be removed effectively. The oxygen removal efficiency reached its maximum value of 22.27% at 300 °C, resulting in markedly decrease of unnecessary oxygenates in bio-oil. Compared to parent HZSM-5, all metal modified HZSM-5 (Ga/HZSM-5, Zn/HZSM-5, and Ga-Zn/HZSM-5) promoted the formation of bio-BTX. Zn/HZSM-5 showed the highest selective yield of bio-BTX because of the enhancement deoxygenation reaction of oxygenates and the aromatization reaction of olefins. The combined approach of TDP and SS-CFP remarkably improved the selective yield of bio-BTX, reaching the maximum value of 65.19%, which was much higher than that from single approach of TDP (33.84%) and SS-CFP (47.36%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.